MOLSON COORS CO2 RECOVERY UNIT ## A DURABLE, SUSTAINABLE SOLUTION One of the United Kingdom's largest and most modern carbon dioxide (CO_2) recovery plants at a brewery is in operation at Molson Coors with a 24/7 capacity of 2,000 kg/h CO_2 . Molson Coors Brewing Company brews, markets and sells a portfolio of leading brands across North America, Europe and Asia. It operates in Canada through Molson Coors Canada; in the U.S. through MillerCoors. In the UK, Molson Coors (UK & Ireland) has over 2,000 employees and breweries in Burton on Trent, Alton and Tadcaster. Its portfolio includes Carling, the UK's best selling lager for three decades, Coors Light, Grolsch, Worthington's, Caffrey's, Corona, Cobra and a range of speciality beers. The Burton Brewery, a fusion of two neighboring breweries, has a capacity of five million UK barrels per year. Even today, the tradition of two breweries in the same town on the same site remains. Molson Coors (UK & Ireland) continues to brew beer in separate production sites, now called North and South. ${ m CO_2}$ – an essential brewing element After entering the UK brewing market in 2002 Molson Coors continued to purchase ${ m CO_2}$, which at the time was mainly derived from non-natural and old chemical production processes. Against this backdrop, Molson Coors looked into a ${ m CO_2}$ recovery system in 2005. But because ${ m CO_2}$ price, quality and availability were acceptable in the UK at that time, the investment was postponed. In 2008, several major CO_2 production facilities closed and, as a result, many beverage producers faced bottlenecks. Due to the shortage, CO_2 became very expensive. In 2009, Molson Coors restarted the CO_2 recovery system project with clear goals. First, the brewer wanted to be CO_2 self-sufficient. Carbon dioxide is essential for beer production. Molson Coors did not want to risk running out of CO_2 , a lesson they learned during the UK's CO_2 shortage. Secondly, they wanted a solution that was energy efficient. Moreover, the system had to be durable as this was a long-term investment. Molson Coors needed a single solution to meet the CO_2 needs for both the North and the South breweries. This posed a special challenge for the CO_2 collection and distribution system. The CO_2 is collected in only one of the two breweries and then delivered to all operating sites. At the South site, for example, can filling is located, while the bottle and keg filling is at the North site. That means long distances for the CO_2 to travel. The solution was to source the green short-cycle CO_2 generated during fermentation. Pentair Haffmans had the responsibility for processing, storage and evaporation of the CO_2 . Moreover, the company's expertise was essential for the entire process chain, from the collection at the fermenters through transporting the CO_2 to where it is used. **KEY FACTS** **Location**Burton on Trent United Kingdom Application Brewery Capacity 2,000 kg/h CO₂ > Start-Up 2010 Roughly, 2.5 kg CO₂ per hectoliter of beer can be recovered from an original wort of 12 degrees Plato. Considering a beer of 13 degrees Plato this would amount to roughly 2.9 to 3 kg of CO₂. nearly Before the green CO_2 is used, it must be purified. The CO_2 generated during fermentation contains several impurities including dimethyl sulfide (DMS), hydrogen sulfide (H₂S), and oxygen (O₂) that must be removed as they have a negative effect on taste, odor and shelf life on the finished product. A state-of-the-art CO_2 recovery system is a cost-effective, sustainable way to purify the CO_2 to food-grade quality. Such a system includes the following steps: - Foam separator - Gas balloon The road to "Green CO₂" mentation, During beer fer- equal amounts of alcohol and CO₂ are generated. - Gas washer - · CO₂ compressor - Activated carbon filter - Dryer - CO₂ condenser - · Storage tank and consumption take place simultaneously, there is an immediate energy saving because the extracted CO2 can be used to liquefy the CO₂. At times when there is no CO₂ production or consumption, it is possible to liquefy or vaporize CO₂ in the traditional way, for example, at the start of the week when the fermentation has not ## **LEARN MORE** Interested in an inquiry or more information: Click or scan our QR code to contact us or visit us at FOODANDBEVERAGE.PENTAIR.COM yet started, but the beer is already being bottled, canned or put in kegs. By using the LiquiVap system whenever possible, Molson Coors saves energy in a number of processes, including CO₂ condensation energy with the release of heat to the centralized brewery cooling system linked to it, when pre-cooling the cooling water, and as the energy necessary to vaporize CO_a. However, the heat recovery system cannot cool more than is actually evaporated. For example, the capacity of a plant like the system installed at Molson Coors is 2,000 kg/h. During production, only 1,000 kg/h CO₂ is needed and therefore only 1,000 kg/h can be cooled down by the LiquiVap system. For the remaining 1,000 kg/h a separate cooling method is necessary. The control system accurately regulates the plant so it uses only the energy for the 1,000 kg/h. Optimum energy efficiency is always reached - and up to 60 percent of the energy consumption can be saved. Water consumption is also significantly reduced. In operation since mid 2010, Pentair Haffmans' CO₂ recovery system encompasses production, processing, storage and distribution at Molson Coors' Burton-on-Trent brewery and runs 24/7. A five-year Service Level Agreement between Molson Coors and Pentair Haffmans was put into place in 2011 to maintain the high performance level. **DAYTONA BEACH** 2361 MASON AVE DAYTONA BEACH, FL 32117, USA MARINUS DAMMEWEG 30 5928 PW, VENLO, THE NETHERLANDS **FREDERICIA** SNAREMOSEVEJ 27 7000 FREDERICIA, DENMARK