SÜDMO

DSV COMPLETE

DOUBLE SEAT VALVES
Based on its many years of experience in valve construction, Südmo offers a comprehensive, refined double-seat valve for implementation and automation of widely varying production processes in the food and beverage industry.

Why use Südmo double seat valves?

As well as a wide range, the series is characterized by ease of handling and maintenance, and is therefore the ideal component for operating your processes with maximum efficiency and safety.

GENERAL REQUIREMENTS FOR HYGIENIC DOUBLE SEAT VALVES

- Reliable separation of two media (e.g. product and cleaning liquid)
- Two sealing elements work separately
- Leakage chamber open to atmosphere
 - Avoids pressure build-up
 - Visual leak detection
- All surfaces in contact with product can be cleaned

FUNCTION

The function of the double-seat valve is shown in the below tank farm application example.

Simultaneous, programmed filling, emptying and cleaning of four production lines without risk of mixing. Reliable separation of upper and lower valve housing allows one or more lines or tanks (purple and red lines) to be cleaned during production (yellow and green lines).
INNOVATIVE SEALING CONCEPT

In seat area
• Step seat with conical seal o-ring
• Radial seat with RSC seal (Radial Seal Complete)

In shaft area
• Sealing by form-fit profile seal

HIGH OPERATING PRESSURES

• Open, close and seal up to 10 bar*
• High pressure pulse resistance

* Depending on type and nominal width

SAFE CLEANING

• Cycle stroke with defined ring gap
• Leakage chamber flushing via external connection
• Sterile chamber for shaft flushing / sterilization
• Shaft flushing of lower valve disc

OPTIMIZED DRIVE & CONTROL CONCEPT

• Durable pneumatic seals
• Main spring chambered
• All valve positions can be monitored IntelliTop 2.0 control unit

TOP QUALITY

• Body machined from solid bar stock
• High surface quality
• Reduced-friction surfaces on moving parts
• Design optimized for cleaning

SERVICE

• Simple, rapid maintenance
• No special tools needed
• Easy handling thanks to compact construction
• Low maintenance costs (Opex)

LICENCES & CERTIFICATES

• EHEDG
• 3A
• PMO
• ATEX
• CRN
• Official licences for use in milk heaters
• All seals comply with FDA standards
STRUCTURE OF DSV COMPLETE DOUBLE SEAT VALVES

- Intellitop 2.0® to control lift and position feedback
- Air connection cyclic lift of lower valve disc
- Air connection main lift
- Air connection cyclic lift of upper valve disc
- Main spring chambered
- Durable pneumatic seals
- Form-fit profile seal
- One-piece, solid valve housing
- Closing sleeve (upper valve disc)
- Ring gap with metal definition
- Radial seal ring "RSC" (Radial Seal Complete)
- Form-fit profile seal
- Valve disc (lower valve disc)
- Leakage outlet
- Upper shaft passage
- Seat region
- Lower shaft passage
UPPER SHAFT PASSAGE

Support ring
Ensures better guidance and optimised friction behaviour

Profile seal
Minimised contact areas to ensure long life and improved wear and friction behaviour; special design prevents press-out (pressure pulses) or pull-out (sticky media).

O-ring
Seal between valve housing and housing holder

SEAT AREA (ON TYPE D 620)

Double O-ring seal
In the upper valve disc, the upper O-ring ensures a product seal in closed valve position, and lower O-ring ensures a leakage chamber seal in open valve position

RSC radial seal
Special shape ensures improved performance and doubling of swell compensation compared with conventional radial O-ring seals. Smaller contact area ensures longer life

LOWER SHAFT PASSAGE

Profile seal
Minimised contact areas to ensure long life and improved wear and friction behaviour; special design prevents press-out (pressure pulses) or pull-out (sticky media).

Support ring
Ensures improved guidance and optimum friction behaviour

O-ring
Seal between valve housing and housing cover
BASIC VALVE FUNCTIONS

BASIC VALVE POSITIONS

Valve closed
- Media are separated, secure against mixing
- Any leaks escape to the environment without pressure

Valve open
- Lower valve disc lifts and closes the leakage chamber
- Product in the leakage chamber is discharged to the outside

VALVE CLEANING - CYCLIC FUNCTIONS

Cleaning via lower valve seat
- Lower valve disc is raised while cleaning the lower line (cyclic lift via predefined ring gap)
- Lower valve seat, disc seal, leakage chamber and leakage drain are cleaned

Cleaning via upper valve seat
- Upper valve disc is raised while cleaning the upper line (cyclic lift via predefined ring gap)
- Upper valve seat, disc seal, leakage chamber and leakage drain are cleaned

EXTENDED VALVE FUNCTIONS

LEAKAGE CLEANING VIA EXTERNAL FLUSHING CONNECTION

Cleaning of leakage chamber via external flushing connection
- Leakage chamber and leakage drain are cleaned via an external connection

STERILISATION / FLUSHING UPPER AND LOWER SHAFT AREA

Sterilisation or flushing via external connections
- Sterilisation or flushing of lower and upper shaft area

SHAFT FLUSHING OF LOWER VALVE DISC

Flushing of lower shaft area (Scallop design)
- Flushing of shaft area during activation of cyclic lift of lower valve plate
DSV COMPLETE OPTIONS

Low leakage

Closed
Lower valve disc with conical seal

Movement of lower disc
Lower line OPEN
Leakage chamber open
-> Flushing effect / Product loss

Movement of lower plate
Lower line open
Leakage chamber closed

Open
Valve open
Leakage chamber closed

Leakage-free

Closed
Lower valve disc radial seal (RSC seal)

Movement of lower disc
Lower line CLOSED
Leakage chamber open
-> No product loss

Movement of lower disc
Lower line closed
Leakage chamber closed

Open
Valve open
Leakage chamber closed

MODELS

<table>
<thead>
<tr>
<th></th>
<th>D600</th>
<th>D610</th>
<th>D620</th>
<th>D630</th>
<th>D620S-sp</th>
<th>D620U</th>
<th>D640</th>
<th>D650</th>
<th>D660</th>
<th>D365it PMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching with minimal product loss (low-leakage)</td>
<td>✗</td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching with no product loss (leak-free)</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage space cleaned during cleaning by lifting stroke function</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower shaft cleaned during cleaning by lifting stroke function</td>
<td></td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage space cleaned via external rinsing port</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterile chambers (sterilizable + rinsable) in upper and lower shaft section</td>
<td></td>
</tr>
<tr>
<td>Axial-conical sealing O-rings in upper and lower valve disc</td>
<td></td>
</tr>
<tr>
<td>Axial-conical sealing O-rings in upper valve disc and radial sealing RSC seal in lower valve disc</td>
<td></td>
</tr>
<tr>
<td>Single-piece housing</td>
<td></td>
</tr>
</tbody>
</table>
DESIGN D600

- Low product loss switching (low leakage)
- Cycling of valve disc during cleaning allows cleaning of leakage chamber
- Lower valve disc conical seal (O-ring)

1. Valve closed
2. Valve open
3. Cyclic lift of lower valve disc
4. Cyclic lift of upper valve disc

DESIGN D610

- Low product loss switching (low leakage)
- No cyclic lift function
- Cleaning via external flushing connection
- Lower valve disc conical seal (O-ring)

1. Valve closed
2. Valve open
3. Cleaning via flushing connection
DESIGN D 620

- Product loss free switching (leakage free)
- Cycling of valve disc during cleaning allows cleaning of leakage chamber
- Lower valve disc radial seal RSC (Radial Seal Complete)

1. Valve closed
2. Valve open
3. Cycling lower seat
4. Cycling upper seat

DESIGN D 630

- Product loss free switching (leakage free)
- No cyclic lift function
- Cleaning via external flushing connection
- Lower valve disc radial seal RSC (Radial Seal Complete)

1. Valve closed
2. Valve open
3. Cleaning via flushing connection
DESIGN D 620 S-Sp (suitable for sterilising – flushing)

- Product loss free switching (leakage free)
- Cycling of valve disc during cleaning allows cleaning of leakage chamber
- Flushing chamber for flushing/sterilisation of shaft areas
- Cleaning/sterilisation via external flushing connection (Sp)
- Lower valve disc radial seal RSC (Radial Seal Complete)

1. Valve closed
2. Valve open
3. Cyclic lift of lower valve disc
4. Cyclic lift of upper valve disc
5. Sterilisation/flushing

DESIGN D 620 U (change over valve)

- Product loss free switching (leakage-free)
- Cyclic lift functions for cleaning of leakage chamber
- Switchover function
- Lower valve disc radial seal RSC (Radial Seal Complete)

1. Valve closed
2. Valve open
3. Cyclic lift of lower valve disc
4. Cyclic lift of upper valve disc
DESIGN D 640 (bottom seat valve / tank outlet valve)

- Product loss free switching (leakage free)
- Cyclic lift functions for cleaning of leakage chamber
- Lower valve disc radial seal RSC (Radial Seal Complete)

1. Valve closed
2. Valve open
3. Cyclic lift of lower valve disc
4. Cyclic lift of upper valve disc

DESIGN D 650 (for ring pipes)

- Product loss free switching (leakage free)
- Cyclic lift functions for cleaning of leakage chamber
- Lower valve disc radial seal RSC (Radial Seal Complete)

1. Valve closed
2. Valve open
3. Cyclic lift of lower valve disc
4. Cyclic lift of upper valve disc
Design D 365it PMO

- Product loss free switching (leakage free)
- Cyclic lift functions for cleaning of leakage chamber
- Lower valve disc radial seal RSC (Radial Seal Complete)
- Shaft flushing (for maximum security)
- Three-seat valve (deflector)
- Meets aligned requirements of PMO and 3A 85-02

Variants

D 365it to Bottom Seat Valve / Tank Outlet Valve

Special design for direct integration into the tank. The design with no dead zones allows optimum tank cleaning.

Type D 640

Type D 650

Design D 660 (for CIP-areas)

- Flushing of the leakage chamber during cyclic lift (opening/closing)
- Lower valve disc conical seal (O-ring)
- Vertical mounting position (other mounting positions on request)
- EPDM sealing

1. Valve closed
2. Valve open
3. Cyclic lift opening/closing of the valve
 - short-time flushing effect of the leakage chamber/exit
GENERAL TECHNICAL DATA

MATERIAL
- **Area in contact with product**: 1.4404 (AISI 316L)
- **Area not in contact with product**: 1.4301 (AISI 304) / 1.4307 (AISI 304 L)
- **Optional**: Higher quality materials
- **Seals**: EPDM / HNBR / FKM
 All seal qualities are FDA-compatible

OPERATING TEMPERATURES

EPDM
- **Hot water**: +95 °C (203 °F) continuous
- **Steam**: +130 °C (266 °F) continuous +150 °C (300 °F) brief sterilisation (15-20 minutes)
- **Cold water**: +1 to +2 °C (33.8 – 35.6°F) continuous

HNBR
- **Hot water**: +95 °C (203 °F) continuous
- **Steam**: +121 °C (250 °F) continuous +140 °C (284 °F) brief sterilisation (15-20 minutes)
- **Cold water**: +1 to +2 °C (33.8 – 35.6°F) continuous

FKM
- **Hot water**: +80 °C (176 °F) continuous
- **Steam**: +121 °C (250 °F) brief sterilisation (15-20 minutes)
- **Cold water**: +1 to +2 °C (33.8 – 35.6°F) continuous

SURFACES
- **Product wetted**: Ra ≤ 0.8 μm
- **Others**: Ra 1.6 μm
- **Optional**: Higher-quality surfaces, e-polished

PRESSURES
- **Control air pressure**: Standard 6 bar (87 psi) – 8 bar (116 psi)
- **Operating pressure**: Standard 10 bar (145 psi)*
 *Lower operating pressures apply to the following types:
 - D640 5 bar (72.5 psi)
 - D650 5 bar (72.5 psi)
 - D660 5 bar (72.5 psi)

Depending on type and nominal width

CONNECTIONS
- **Pipe dimensions in accordance with**
 - DIN 11850-2 (DIN 11866-A)
 - ASTM A270 (DIN 11866-C) (ASME BPE-2009)
 - DIN EN ISO 1127 (DIN 11866-B)

CONNECTION LAYOUT

CONNECTION MARKINGS

Different customer needs can be met thanks to the housing constructed of solid material. Discuss your needs with us at any time.

OPTIONAL ACCESSORIES

- **Air pressure amplifier / booster**
 - Supports main lift function
 - Used for low control air pressure*
 Control air pressure depending on type & nominal width

- **Position feedback OPEN/CLOSED**
 - Proximity initiator M12

- **Position feedback upper valve disc**
 - Feedback CLOSED
 - Proximity initiator M8
A successful process begins with the design and assembly of the valves into larger function units. As well as the pure functionality of the system, many other points must be taken into account:

- Selection of suitable components
- Correct installation position of all individual components
- Arrangement with no dead zones
- No sumps or domes
- Complete drainability
- Arrangement compatible with orbital welding
- Reduction in number of weld seams
- Compensation for heat expansion
- Adequate support and stabilisation of components
- Capture and discharge of leakage
- Simple maintenance work

PLANNING, DESIGN & PRODUCTION

3D drawing of a valve manifold
Before production comes planning. Using modern 3D systems, the valve manifold is planned in every detail and the result presented to the customer. Then production of the valve manifold can begin.

Building the frame
A stainless steel tube frame holds the valve manifold. Each frame is made individually to meet the customer’s needs.

Mounting the valves
The individual parts of the valves for mounting come together on the workbench. The valve housing is sent directly to the plant construction.

Housing preparation
Before combining the valve housings into a manifold, the housings are equipped with flanges, elbows and other components using welding machines.

Orbital welding
The valve housing is welded using orbital welders. Together with accurate weld seam preparation, this ensures reproducible weld seams of the highest quality.

Preparation
All weld seams of the valve manifold are externally prepared mechanically. The valve manifold is then cleaned.

Fitting valve upper parts
Finally, the valve manifold is fitted with the valve upper parts, the air hoses suitable to the customer’s needs, and the electric wiring for the process control heads is prepared; the finished valve manifold is then subjected to a final test.

Finished valve manifolds
The finished valve manifolds can be installed in your plant directly after delivery and brought into operation.

CUSTOMER BENEFITS

- Cost-efficient complete package
- Decades of experience in design and production
- Compact construction
- Simple and rapid installation
- Perfect integration in process control (e.g. IntelliTop2.0 with 24VDC, AS interface, DeviceNet, or 110VAC)
- Countless possible variations in consultation with our experts
- Simple access for maintenance (e.g. with access platforms or steps)
- Excellent WIG weld seam qualities to DIN EN 287
- Valve manifold production observing Pressure Vessel Directive 97/23/EC
The innovative control unit offers the customer countless possibilities for automation of process systems, and hence considerable potential for increasing efficiency.

The IntelliTop 2.0 was awarded the IF Product Design Award 2010 for its perfect combination of function and aesthetics. The IntelliTop 2.0 control unit from Pentair Südmo combines control and monitoring of process valves in one unit. The decentral arrangement of the control heads on the process valves allows a reduction in hose and cable lengths and leads to a clear system structure.

The heart of the IntelliTop 2.0 is the travel measurement system to detect up to three switch positions of the process valve. Great emphasis has been placed on simple programming by means of three Teach-In keys. This guarantees rapid and process-reliable commissioning.

The closed travel measurement system serves as a protective tube which prevents risk of injury when the control head is open, and protects the internal technology on installation of the head.

BENEFITS

- Process-reliable system monitoring, simple, intuitive and rapid implementation
- Process valve switch times can be set using integral supply and extraction air chokes
- All-round LED display for visual status monitoring (colour allocation can be configured)
- Simplified valve maintenance thanks to maintenance function which can be activated externally
- Plant-specific adaptations via integrated microcontroller
- Integrated microcontroller supplies additional information
- Short air hose and cable routes, clear structure of process plant
- Simple, rapid fault analysis and repair, so reduction in plant downtimes
- Compact construction and optimum compatibility with Pentair Südmo process valves
- Scanning of all valve positions possible in double-seat valve

TECHNICAL DATA BENEFITS

- Communication
 - 24 V DC
 - AS interface
 - DeviceNet
 - 110 V AC
- Travel Measurement System
 - Lift range 85 mm
 - Feedback 3 positions, adjustable, connection for external signal
- Magnetic valves
 - Number 0–3 pcs
 - Flow 200 l/min
 - Choke function Intake and extraction air separate
- Electrical connections
 - 24 VDC Cable passage
 - AS interface Cable with 4-pin M12x1 plug
 - DeviceNet Cable with 5-pin M12x1 plug
 - 110 V AC Cable passage
- Pneumatic connections
 - Push-fit hose connection Ø 6 mm (optional 5/16”)
 - Push-fit hose connection Ø 8 mm (1/4”)
- Other data
 - LED status display green, yellow, red
 - Protection classes IP65 and IP 67 combined
 - IP 69K
 - Ex-zone Zone 2/22